>
Yale Just Proved COVID Vaccine Injury Exists and Spike Production Persists for Years...
Time To Kash-Out the Rogue FBI
BREAKING: The Original Confirmed Creators Of COVID-19 – The Wuhan Institute – Is Now Warning...
Microsoft Majorana 1 Chip Has 8 Qubits Right Now with a Roadmap to 1 Million Raw Qubits
The car that lets you FLY over traffic jams! Futuristic £235,000 vehicle takes flight...
Floating nuclear power plants to be mass produced for US coastline
The $132 "Dumfume" LiFePO4 Battery Tested! Holy cow...
Virginia's Game-Changing Nuclear Fusion Plant Set To Deliver Clean Energy And Disrupt The Fossil
How This Woman Turned Arizona's Desert into a Farmland Oasis
3D-printed 'hydrogels' could be future space radiation shields for astronaut trips to Mars
xAI Releases Grok 3 in About 44 Hours
Flying Car vs. eVTOL: Which Is the Best New Kind of Aircraft?
NASA and General Atomics test nuclear fuel for future moon and Mars missions
Lithium batteries started an avalanche of innovation when they became widely available, largely because they could hold significantly more energy by weight than other contemporary chemistries. Touchscreen smartphones, drones, all-day laptops, long-range electric cars and the first generation of battery-powered aircraft were some of the results.
But more energy storage is always better – you can either make things last longer, or weigh less – and manufacturers have been racing to raise the bar with next-gen battery technologies. One key metric in the aviation world is specific energy – the amount of energy stored per kilogram of battery, and CATL says it's ready to set a new benchmark.