>
The ultimate baking soda (sodium bicarbonate) survival guide:
Most efficient generator to recharge batteries (that I've tested)
How to properly set up your 275-gallon water totes for firefighting or irrigation of garden.
Doug Casey on Milei, Markets, and the Future of Argentina
Cramming More Components Onto Integrated Circuits
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
They found hot pockets in the house, which were used to obtain a search warrant and subsequently bust Kyllo.
Fortunately, a 5-4 Supreme Court decision ruled the scan an unlawful search under the Fourth Amendment, requiring a warrant the police did not obtain. Score one for privacy, but the government is about to have a far more controversial and dangerous tool at its disposal to monitor what's going on inside your home.
Unlike a thermal imager, this device is already in your home – and you put it there.
How It Works
WiFi is electromagnetic waves in the 2.4 and 5 GHz ranges. It's the same thing as the light you see, only it can penetrate walls due to its much longer wavelength. Just like light (and echolocation) these waves also reflect off various surfaces and, when reconstructed properly, can be used to create an image.
Development of this technology goes back at least as far as July 2005, where researchers claimed at an IEEE Symposium that they had created an ultra-wideband high-resolution short pulse imaging radar system operating around 10 GHz. The applications for which were explicitly for military and police use, providing them with "enhanced situation awareness."
A few years later, in 2008, researchers at UC Santa Barbara created an initial approach for imaging with WiFi that they presented at IEEE ACC 2009. A year later they demonstrated the feasibility of this approach.