>
China's Nightmarish New Bio Weapon Targets Race and Ethnicity
The Epstein Files Just EXPOSED the AI Mind Control Agenda (2026 Warning)
Maxwell offers testimony if granted Trump clemency
How RFK Jr's Guidelines Could Change Farming - Joel Salatin
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

That's where a new system may someday come in, as it utilizes just a small amount of electricity – which could be stored in a battery – to desalinate seawater for drinking.
Currently, reverse osmosis in the most commonly used method of desalination. In a nutshell, it works by forcing seawater through a permeable membrane that allows water molecules to pass through, but not salt (sodium chloride) molecules. It's an effective process, but it also requires a considerable amount of power in order to generate the required water-pushing pressure. Additionally, the membranes eventually get clogged with captured salt, and have to be replaced.
Developed by scientists from the UK's Universities of Bath, Swansea and Edinburgh, an experimental new system doesn't utilize pressure at all. Instead, it incorporates a vessel with a positively charged electrode at one end, a negatively charged electrode at the other, and a porous membrane between them.
When seawater is placed inside, the positively charged sodium ions in the salt molecules are drawn to the negatively charged electrode, while the negatively charged chloride ions are drawn to the positively charged electrode.
As the chloride ions pass through the membrane while moving toward the positive electrode, they also push water (H2O) molecules through that membrane. The sodium ions remain on the original side of the membrane, as they're attracted to the negative electrode.
The chloride ions are then circulated back to that side, so they can move more water molecules across. Eventually, most the water ends up on the positive-electrode side of the membrane, completely salt-free.
So far, the system has only been tested on a few milliliters of water at a time. The researchers are thus looking for partners to help develop the technology up to the point that it can process one liter of water, so they can get a better sense of how much power a practical system would require.