>
Self-Amplifying RNA Shots Are Coming: The Untold Danger
The global battle over microchips | DW Documentary
Israel BURYING Burned Cars They Attacked On October 7!
FBI, CDC refused to investigate Chinese biolab in California...
China plans to mass produce humanoid robots in two years -
World's largest airship is unveiled:
Did He Lie? Lawmakers Request Investigation on Elon Musk's -
These $4,000 homes are keeping families in the Pine Ridge Native American Reservation...
How to Make Free Gas with Garbage | Free Gas Butane - Propane | Liberty BioGas
Gravity tests head-tracking, shoulder-mounted firearms on its jet suit
Incredible Fastest Wooden House Construction - Faster And Less Inexpensive Construction Solutions
Amazing Lego-Style HEMP BLOCKS Make Building a House Quick, Easy & Sustainable
Optimized Nuclear Thermal Rocket for 45 Days to Mars
New 10 Minute Treatment Restores Sense of Smell and Taste in Patients with COVID Parosmia
The one-two punch provided by the novel approach could pave the way for earlier detection and more effective treatment of the disease.
With an average five-year survival rate of less than 10%, pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer. It's also difficult to detect using conventional imaging methods, including positron emission tomography (PET) scans.
Now, researchers at Osaka University in Japan have developed a strategy for combatting this deadly cancer by combining therapeutics and diagnostics – 'theranostics' – into a single, integrated process.
The process developed by the researchers uses radioactive monoclonal antibodies (mAb) to target glypican-1 (GPC1), a protein highly expressed in PDAC tumors. GPC1 has been implicated in cancer cell proliferation, invasion, and metastasis, and high expression of the protein is a poor prognostic factor in some cancers, including pancreatic cancer.
"We decided to target GPC1 because it is overexpressed in PDAC but is only present in low levels in normal tissues," said Tadashi Watabe, the study's lead author.
The researchers injected human pancreatic cancer cells into mice, allowing them to develop into a full tumor. The xenograft mice were administered intravenous GPC1 mAb labeled with radioactive zirconium (89Zr) and observed for antitumor effects.
"We monitored 89Zr-GPC1 mAb internalization over seven days with PET scanning," said Kazuya Kabayama, the study's second author. "There was strong uptake of the mAb into the tumors, suggesting that this method could support tumor visualization. We confirmed that this was mediated by its binding to GPC1, as the xenograft model that had GPC1 expression knocked out showed significantly less uptake."