>
From Abandoned Japanese Property to Thriving Homestead & Bee Farm
Trump Backs AI Data Centers, New Generation Of mRNA Gene-Therapy Injections
Michael Malice: A Clinical Analysis | EP 516
Beam me to the stars: Scientists propose wild new interstellar travel tech
This is NOT CGI or AI-generated video. It's 100% real!
Nearly two years ago, James Gerde shared a video of Hercules dancing...
Ultrasound that allows you to feel virtual objects.
$35 lens turns any smartphone into a powerful microscope
Robotic sea turtle could soon be swimming in an ocean near you
There's Now a 1,000 Horsepower Electric Motor Based on a Motorcycle Motor
Chinese Robot: 500 Trillion Operations Per Second?
Starship Flight Test 7 -- Far Beyond What We Imagined
Deep Fission Nuclear to Power 2 Gigawatts of AI Data Centers
The various polymers can be fine-tuned to replicate the elasticity or rigidity of a human hand, representing a major advancement over existing 3D-printed prosthetics.
While 3D printing technology was previously limited to fast-curing plastics, researchers have now made it suitable for slow-curing plastics as well.
They say these materials have "decisive" advantages as they have enhanced elastic properties and are more durable and robust.
The use of such polymers is made possible by new technology developed by researchers at ETH Zurich in Switzerland and a US startup from Mass. Institute of Technology which can be used to create delicate structures and parts with cavities as desired. InkBit from MIT now offers the technology and prints complex objects on customer request.The technology also makes it easy to combine soft, elastic, and rigid materials.
"We wouldn't have been able to make this hand with the fast-curing polyacrylates we've been using in 3D printing so far," said Thomas Buchner, a doctoral student from ETH Zurich who led the authorship of the paper published on their work.
"We're now using slow-curing thiolene polymers. These have very good elastic properties and return to their original state much faster after bending than polyacrylates," he said, adding this makes them ideal for making complex prosthetics.