>
Putin Calls Up 160,000 Men to Russian Army in Latest Conscription Drive, at Crucial Moment...
ELECTION FRAUD AGAIN: Liberal Susan Crawford did not win the election last night.
NATO WENT EVIL IN THE EU: Marine Le Pen, the NATO op to get her, the context around it...
The DOGE of War: TOP 10 MEMES – Watch MAGA
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
Spinal injuries interrupt the flow of electrical signals from the brain to the lower parts of the body, reducing mobility and in severe cases leading to total paralysis. Spinal stimulators are devices that can be surgically implanted into a patient's spine to bypass the injury site and restore some mobility. Unfortunately, these are often bulky, require surgery, and have precision issues.
For the new study, the Johns Hopkins team developed a much smaller device that's flexible and stretchable. It's placed into a different site than other stimulators – the ventrolateral epidural surface, which is not only close to motor neurons for better precision, but it can just be injected into place with a regular syringe, no surgery required. Tests in paralyzed mice proved promising.