>
THE CRYPTO VIGILANTE SUMMIT:
WHAT MATTERS MOST IN CRYPTO
Retarded Or Evil? Leftist Arguments Justifying The Murder Of Charlie Kirk
Charlie Kirk once questioned if Ukraine would try to kill him (VIDEO)
KOL060 | Guest on Ernest Hancock's Declare Your Independence radio show: intellectual property a
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
The tiny microfliers, whose development by engineers at Northwestern University was detailed in an article published by Nature this week, are being billed as the smallest-ever human-made flying structures.
Tiny fliers that can gather information about their surroundings
The devices don't have a motor; engineers were instead inspired by the maple tree's free-falling propeller seeds — technically known as samara fruit. The engineers optimized the aerodynamics of the microfliers so that "as these structures fall through the air, the interaction between the air and those wings cause a rotational motion that creates a very stable, slow-falling velocity," said John A. Rogers, who led the development of the devices.
"That allows these structures to interact for extended periods with ambient wind that really enhances the dispersal process," said the Northwestern professor of materials science and engineering, biomedical engineering and neurological surgery.
The wind would scatter the tiny microchips, which could sense their surrounding environments and collect information. The scientists say they could potentially be used to monitor for contamination, surveil populations or even track diseases.
Their creators foresee microfliers becoming part of "large, distributed collections of miniaturized, wireless electronic devices." In other words, they could look like a swarm.