>
How Globalists Use Crazed Leftists To Piss Off The Populace And Provoke Dictatorship
Liberation Day triggers panic mode for manufacturers
Trump's "Liberation Day" Tariffs are a Mistake
First They Came for the Op-Ed Writers
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
Scientists at Rice University have now shown that substituting graphene can not only save sand, but makes concrete lighter, stronger and tougher.
Despite being a sheet of carbon atoms just one atom thick, graphene has a reputation for being incredibly strong. As such, it's no surprise that this 'wonder material' has been mixed into concrete before, usually to make it stronger and more durable. But that usually involves just adding graphene to the recipe – for the new study, the Rice team wanted to replace sand completely.
Concrete is made of three main ingredients: water, an aggregate like sand, and cement to bind it all together. Sand is the largest component by volume, and given modern humanity's insatiable appetite for concrete, sand mining is increasing. Not only is this process destructive, but it risks running out of sources.
The research comes from the lab of Rice University chemist James Tour, whose team has been making graphene for years using a technique they developed called flash Joule heating. Essentially, a carbon-rich base material is quickly superheated with a zap of electricity, converting it into graphene flakes. In this case, the base material was metallurgical coke, a fuel source created from coal.
"Initial experiments where metallurgical coke was converted into graphene resulted in a material that appeared similar in size to sand," said Paul Advincula, lead author of the study. "We decided to explore the use of metallurgical coke-derived graphene as a total replacement for sand in concrete, and our findings show that it would work really well."