>
Yale Just Proved COVID Vaccine Injury Exists and Spike Production Persists for Years...
Time To Kash-Out the Rogue FBI
BREAKING: The Original Confirmed Creators Of COVID-19 – The Wuhan Institute – Is Now Warning...
Microsoft Majorana 1 Chip Has 8 Qubits Right Now with a Roadmap to 1 Million Raw Qubits
The car that lets you FLY over traffic jams! Futuristic £235,000 vehicle takes flight...
Floating nuclear power plants to be mass produced for US coastline
The $132 "Dumfume" LiFePO4 Battery Tested! Holy cow...
Virginia's Game-Changing Nuclear Fusion Plant Set To Deliver Clean Energy And Disrupt The Fossil
How This Woman Turned Arizona's Desert into a Farmland Oasis
3D-printed 'hydrogels' could be future space radiation shields for astronaut trips to Mars
xAI Releases Grok 3 in About 44 Hours
Flying Car vs. eVTOL: Which Is the Best New Kind of Aircraft?
NASA and General Atomics test nuclear fuel for future moon and Mars missions
The idea certainly isn't a new one – payload-carrying gliders were towed toward combat zones in World War 2, full of troops and/or equipment, then released to attempt unpowered landings in the thick of things – with widely variable results, particularly where stone-walled farms were a factor.
More recently, the US Air Mobility Command tried flying one C-17 Globemaster III some 3-6,000 ft (900-1800m) back from another, "surfing" the vortices left in the lead plane's wake – much like ducks flying in formation – and found there were double-digit fuel savings to be gained.
But Texas startup Aerolane says the savings will be much more substantial with purpose-built autonomous cargo gliders connected to the lead plane with a simple tow rope. With no propulsion systems, you save all the weight of engines, motors, fuel or batteries. There'll be no cabin for a pilot, just space for cargo and the autonomous flight control systems that'll run them.
These "Aerocarts" will be pulled down the runway by the lead plane just like a recreational glider. They'll lift off more or less together with the lead plane, then stay on the rope throughout the cruise phase of flight, autonomously surfing the lead plane's wake for minimal drag and optimal lift. And they'll either land right behind the lead plane, rope still attached, or eventually possibly be released at an ideal spot so they can make their own descent, potentially landing at an entirely different airstrip than the lead plane.
The latter would require some regulatory wrangling, but otherwise, according to Bloomberg, Aerolane believes it shouldn't be treated much differently by the FAA than regular ol' recreational gliders. It remains to be seen how the FAA will feel about this.