>
World War III has Already Begun
H.R.1919 - Anti-CBDC Surveillance State Act
Deadly Clashes in Syria's Sweida: What's Really Going On? | Vantage with Palki Sharma | N18G
"False, Malicious, Defamatory" - Trump Demands Unsealing Of Epstein Files,...
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
For the past few years, JEKTA has been designing its Passenger Hydro Aircraft Zero Emission 100 – or PHA-ZE 100 – around a battery-electric powertrain.
The amphibious passenger aircraft will feature a composite airframe to nip corrosion in the bud, 10 electric motors/props at 180 kW each spread over the roof-mounted wings for a cruising speed of 135 knots (155 mph), and enough quick-charge battery blocks for one-hour hops "from oceanic islands to Scandinavian fjords" – with 30 minutes in reserve to cope with unforeseen flight plan changes.
It can accommodate up to 19 passengers and three crew, making use of materials for the inside such as cork, natural fiber composites and vegan leather. JEKTA recently tapped MBVision to help visualize a bunch of interior designs for the aircraft, including economy, executive, VIP and air ambulance layouts.
The company description notes that the aircraft is configured to take off and land in coastal waters, rivers, canals and lagoons as well as land-based runways. And the overall design can "accept existing and future energy storage solutions." Initial plans called for battery technology to provide the juice for the electric motors, but the partnership with ZeroAvia will invite hydrogen to the party and enable longer zero-emission flights, with larger payloads. At this stage, the collaboration is talking up range figures in the region of 500 to 600 km (310 - 373 miles) and a payload increase of one tonne.
"By working with ZeroAvia and defining a suitable fuel-cell system, we can offer our potential operator clients the choice of two fuel sources," JEKTA's CEO, George Alafinov, commented. "The hydrogen system delivers a viable alternative to electric battery power that promises a significant increase in the range of our PHA-ZE 100, which will suit operators serving longer regional routes. In contrast, the battery power option will suit shorter-range missions and operators flying in locations where electric power is more cost-effective and accessible."