>
Yale Just Proved COVID Vaccine Injury Exists and Spike Production Persists for Years...
Time To Kash-Out the Rogue FBI
BREAKING: The Original Confirmed Creators Of COVID-19 – The Wuhan Institute – Is Now Warning...
Microsoft Majorana 1 Chip Has 8 Qubits Right Now with a Roadmap to 1 Million Raw Qubits
The car that lets you FLY over traffic jams! Futuristic £235,000 vehicle takes flight...
Floating nuclear power plants to be mass produced for US coastline
The $132 "Dumfume" LiFePO4 Battery Tested! Holy cow...
Virginia's Game-Changing Nuclear Fusion Plant Set To Deliver Clean Energy And Disrupt The Fossil
How This Woman Turned Arizona's Desert into a Farmland Oasis
3D-printed 'hydrogels' could be future space radiation shields for astronaut trips to Mars
xAI Releases Grok 3 in About 44 Hours
Flying Car vs. eVTOL: Which Is the Best New Kind of Aircraft?
NASA and General Atomics test nuclear fuel for future moon and Mars missions
Medical professionals often refer to the 'Golden Hour' as the crucial period straight after a traumatic injury. While it's not strictly one hour, the general principle is that the faster medical intervention occurs, the better the patient's chances of survival.
That's obviously a big problem for emergencies that occur a long way from a hospital. But a new study from Harvard's Wyss Institute suggests a new way to extend that so-called Golden Hour, by placing a patient in "biostasis" to slow down their metabolism and prevent permanent organ damage.
The researchers used an algorithm called NeMoCad, which analyzes the structures of compounds to figure out which ones might have a desired effect – in this case, inducing torpor, a kind of hibernation-like state that some animals enter naturally. This process singled out a compound called donepezil, or DNP, which is currently FDA-approved as a treatment for Alzheimer's.
"Interestingly, clinical overdoses of DNP in patients suffering from Alzheimer's disease have been associated with drowsiness and a reduced heart rate – symptoms that are torpor-like," said María Plaza Oliver, first author of the study. "However, this is the first study, to our knowledge, that focuses on leveraging those effects as the main clinical response, and not as side effects."
The team tested out DNP's possible torpor-inducing effects in tadpoles. And sure enough, it reduced three biological factors that suggest torpor: oxygen consumption, heart rate and swimming motion.
Unfortunately, when injected as free particles, the drug accumulated in tissues across the tadpoles' bodies and caused some toxicity. To prevent that, the team encapsulated the DNP inside lipid nanoparticles, and found that the drug accumulated in the brain tissue, reducing toxicity while still inducing the torpor-like state.