>
Lumber Prices Are Flashing a Warning Sign for the U.S. Economy
The Cost Of Living The American Dream For A Lifetime Has Reached A Whopping 5 Million Dollars
Reverse Erectile Dysfunction FAST (Without Viagra)
Who's Buying Up America's Farmland? The Land Grab You Need to Know About
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Medical professionals often refer to the 'Golden Hour' as the crucial period straight after a traumatic injury. While it's not strictly one hour, the general principle is that the faster medical intervention occurs, the better the patient's chances of survival.
That's obviously a big problem for emergencies that occur a long way from a hospital. But a new study from Harvard's Wyss Institute suggests a new way to extend that so-called Golden Hour, by placing a patient in "biostasis" to slow down their metabolism and prevent permanent organ damage.
The researchers used an algorithm called NeMoCad, which analyzes the structures of compounds to figure out which ones might have a desired effect – in this case, inducing torpor, a kind of hibernation-like state that some animals enter naturally. This process singled out a compound called donepezil, or DNP, which is currently FDA-approved as a treatment for Alzheimer's.
"Interestingly, clinical overdoses of DNP in patients suffering from Alzheimer's disease have been associated with drowsiness and a reduced heart rate – symptoms that are torpor-like," said María Plaza Oliver, first author of the study. "However, this is the first study, to our knowledge, that focuses on leveraging those effects as the main clinical response, and not as side effects."
The team tested out DNP's possible torpor-inducing effects in tadpoles. And sure enough, it reduced three biological factors that suggest torpor: oxygen consumption, heart rate and swimming motion.
Unfortunately, when injected as free particles, the drug accumulated in tissues across the tadpoles' bodies and caused some toxicity. To prevent that, the team encapsulated the DNP inside lipid nanoparticles, and found that the drug accumulated in the brain tissue, reducing toxicity while still inducing the torpor-like state.