>
Yale Just Proved COVID Vaccine Injury Exists and Spike Production Persists for Years...
Time To Kash-Out the Rogue FBI
BREAKING: The Original Confirmed Creators Of COVID-19 – The Wuhan Institute – Is Now Warning...
Microsoft Majorana 1 Chip Has 8 Qubits Right Now with a Roadmap to 1 Million Raw Qubits
The car that lets you FLY over traffic jams! Futuristic £235,000 vehicle takes flight...
Floating nuclear power plants to be mass produced for US coastline
The $132 "Dumfume" LiFePO4 Battery Tested! Holy cow...
Virginia's Game-Changing Nuclear Fusion Plant Set To Deliver Clean Energy And Disrupt The Fossil
How This Woman Turned Arizona's Desert into a Farmland Oasis
3D-printed 'hydrogels' could be future space radiation shields for astronaut trips to Mars
xAI Releases Grok 3 in About 44 Hours
Flying Car vs. eVTOL: Which Is the Best New Kind of Aircraft?
NASA and General Atomics test nuclear fuel for future moon and Mars missions
With backing from Sam Altman, the CEO of OpenAI and makers of ChatGPT, Oklo Inc. – a company that recycles nuclear fuel and uses it in its nuclear fission microreactor dubbed Aurora – says this will be possible. Not only possible, but in Oklo's plans.
As Aurora's design is tailored towards remote areas, Oklo imagines the reactor site serving as a community hub. Locations where winters can be long and bitter often impact the mental well being of residents. By adding this type of comfortable social venue, Oklo considers it to be another added benefit.
For those of us who were alive during the 80s and 90s, the thought of swimming in an indoor pool at your local nuclear power plant probably gives us mental images of Homer Simpson eating glowing green donuts. Oklo assures us that it is entirely safe. Not only will it be safe, but the microreactor will produce almost exactly zero greenhouse emissions, nor will it produce nuclear waste. By using recycled nuclear fuel, it actually lessens the amount of existing nuclear waste.
The microreactor is designed with a sort of "fire-and-forget" ideology for the most part. It's called a "microreactor" not only for its small footprint but also for its small output at 1.5 MW – enough to power around 1,000 homes in ideal conditions. It differs from a Small Module Reactor (SMR), which is designed for roughly 50-125 MW of output. Traditional nuclear reactors can output as little as 500 MW up to the gargantuan Kashiwazaki-Kariwa Nuclear Power Plant in Japan which outputs 8,200 MW (8.2GW).
The Aurora microreactor has passive safety features and a sealed core. It has no moving parts and can cool itself and shut down without human intervention. It's designed to run continuously for up to 20 years before needing to be refueled. Rather than using a pair of forceps to pull out a green glowy rod – again, à la Homer Simpson – the entire core is simply removed and replaced with another sealed core containing the next batch of recycled nuclear fuel.
The Aurora uses high-assay low-enriched uranium-235 fuel (HALEU) in a fairly unique fast reactor design – that is, it uses high-energy neutrons to maintain the nuclear chain reaction. Traditional nuclear reactors use a moderator (typically water) to slow down neutrons to make chain reactions more manageable, stable, and with higher probability, given that they're using a much lower enrichment of 3-5% uranium-235.