>
The Vain Struggle to Curb Congressional Stock Trading
The Tesla Model S Is Dead. Here's Why It Mattered
America's First Car With Solid-State Batteries Could Come From This Little-Known EV Maker
POWERFUL EXCLUSIVE: Learn Why Silver, Gold, & Bitcoin Plunged After JD Vance Announced...
How underwater 3D printing could soon transform maritime construction
Smart soldering iron packs a camera to show you what you're doing
Look, no hands: Flying umbrella follows user through the rain
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries

If you saw a giant metallic balloon with fins floating up toward the sky somewhere near Roswell, New Mexico, last week, have no fear -- it wasn't a UFO. Designed for the stratosphere, this high-altitude platform system was made by Sceye to do work commonly performed by drones and satellites like Earth observation and providing internet access to underserved communities.
"Unlike drones, we stay up. And unlike low Earth orbit satellites, we stay over the same area while they're passing by," says Sceye founder and CEO Mikkel Vestergaard Frandsen. "The only other thing that can do what we're doing is a geostationary satellite."
Geostationary satellites, however, operate much farther away from Earth than Sceye's HAPS. This means that Sceye's stratospheric infrastructure could provide detailed Earth observations and beam internet directly to users' devices. Satellite-based internet infrastructure like Starlink, on the other hand, requires satellite dishes to access their services, which can cost hundreds of dollars, not to mention the environmental costs of launching all those satellites.
We visited Sceye's hangar a week before the company was getting ready for its latest launch. To reach the stratosphere, the HAPS is filled with helium, which helps the aircraft conserve energy during ascent and operation.
Upon release, the helium gathers in the nose of the aircraft, causing it to ascend in a vertical position. It levels out upon reaching the stratosphere. Batteries charged by solar panels fixed to the top of the HAPS help the aircraft stay in position and power its payloads until it's time to descend.
Sceye's successful launch will usher in the planning of the company's next flight program, which will focus on endurance. The goal, says chief of Mission Operations Stephanie Luongo, is to have a HAPS stay up for "over a year."
The company's ultimate goal is to use these HAPS to create a continuous layer of infrastructure in the stratosphere that can support internet communications, search and rescue efforts and environmental monitoring.