>
EXCLUSIVE: Oath Keepers Founder Stewart Rhodes Calls For Organized Protest At The White House
Trump Meets With The Global Head of Al-Qaeda, Ahmed Al-Sharaa The Tyrannical Dictator of Syria
BREAKING EXCLUSIVE: Alex Jones Debates Dinesh D'Souza On American Zionists' Attempts...
61% Of Institutions Plan To Boost Crypto Exposure, Despite October Crash; Sygnum
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?

Ever since the Anglo-French Concorde retired in 2003, civil supersonic flight has been something of a lost art. In recent years, a number of startups have been working on various projects to create a new generation of supersonic transports that are quieter, greener, more efficient, and cost effective to operate.
Now, one supersonic aircraft has actually taken flight, albeit in the form of an uncrewed, remotely piloted experimental craft with a wingspan of 13 ft (4 m) and a dry weight of 880 lb (200 kg). In the skies over New Zealand's Glentanner Aerodrome near the base of Aoraki/Mount Cook, the Mk-II Aurora hit Mach 1.1 while climbing to an altitude of 82,500 ft (25,150 m).
According to the company, the Mk-II Aurora broke other records by being the first New Zealand-designed and built supersonic aircraft, the highest altitude reached from New Zealand, and the fastest climb to 66,000 ft (20 km). The rocket-powered aircraft did this in 118.6 seconds, which is 4.2 seconds better than that achieved by a specially modified F-15 in the 1970s.
In addition, the Mk-II Aurora made a second flight six hours later.
The eventual goal is to reach speeds of about Mach 3.5 at the edge of space, which is an altitude of 62 miles (100 km), where the Aurora would be used for microgravity research, atmospheric science, Earth observation, and testing high-speed flight.
"This achievement highlights the immense potential of rocket-powered aircraft to achieve performance never seen before," said Stefan Powell, CEO of Dawn Aerospace. "With flight test 57, we retired the final major technical risk in the Aurora program: vehicle dynamics through the transonic regime. We have now confirmed the Aurora as the highest climb rate vehicle ever built. This milestone sets the stage for Aurora to become the world's highest and fastest-flying aircraft and paves the way for the first operational hypersonic aircraft, redefining what's possible in aviation."