>
Blue Origin Has a Critical Flight in Three Days That Will Determine Launches in 2026
New York City Polling Stations Swatted! PLUS, Ballots List Mamdani Twice...
Mamdani Election Victory Rally Screen Hacked To Say "Trump Is Your President"...
Tommy Robinson Acquitted After Refusing To Unlock Phone Under UK Terrorism Act
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
Russia flies strategic cruise missile propelled by a nuclear engine
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install

Located in the eastern Chinese city of Hangzhou, the Centrifugal Hypergravity and Interdisciplinary Experiment Facility (CHIEF) houses the world's largest hypergravity centrifuge. According to the South China Morning Post, the project was greenlit in 2018 by the national government, and construction began in 2020 at a cost of some 2 billion yuan (US$276.5 million).
Basically, it's a giant spinning arm in a large room that can carry a payload, and spins extremely fast to create artificial gravity stronger than what we normally experience on Earth.
When it spins at a high speed in a circle, the arm's motion creates what's called a centrifugal force; it pushes outward, simulating gravity that can be many times stronger than Earth's normal gravity (which we call 1G), aka hypergravity. This force helps us replicate conditions to test the strength of materials for building bridges and spacecraft, the effect of rivers' flood dynamics on dams, and how plants might grow in space.
By creating hypergravity conditions, CHIEF accelerates physical processes that would normally take much longer under Earth's gravity. This allows scientists to observe and study phenomena more quickly and efficiently.
Chen Yunmin, a professor at Zhejiang university who led the CHIEF project, said that with facilities like this, "scientists can observe the transport of pollutants that in nature would take tens of thousands of years."
Similarly, you could use a centrifuge like this to observe how dams might function over years of stress in just a few hours, and model dangerous scenarios safely. This helps engineers design better, safer dams and prepare for potential flood events.
Since they enable these realistic simulations much faster than they'd occur in nature, and with smaller models, these hypergravity centrifuges are said to 'compress' time and space. That also makes them useful for research into complex physics problems and engineering challenges.
CHIEF is designed to support a centrifuge capacity of 1,900 g-t (gravity acceleration × ton), and payloads of up to 32 tons. That's said to be more than other facility on the planet, beating out the US Army Corps of Engineers' facility that manages 1,200 g-t.