>
X CEO Yaccarino Stunned, Musk Intrigued After Reading Bombshell Report On Far-Left NGOs...
In Latest Blow To European Democracy, Judge Rules Marine Le Pen Ineligible To Run...
Kremlin goes into damage control, insisting 'work is underway' despite Trump getting...
SpaceX set to launch first-ever crewed mission to orbit North and South poles
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
The findings have opened the door to preventing multi-organ – or even age-related – disease.
There has been much interest recently in senescent cells and how these tired and ineffective cells are associated with aging and can affect our overall health. Over the years, we've covered research into the effect senescent cells have on things like lower back pain and hair growth.
Now, a new study led by the University of Edinburgh and Cancer Research UK (CRUK) Scotland Institute has demonstrated for the first time that once a large enough number of senescent cells have accumulated in one sick organ, the liver, they can spread to multiple healthy organs, causing them to fail.
"Our findings provide the first insight into why severe liver injury results in the failure of other organs, such as the brain and kidneys, and death," said Professor Rajiv Jalan, a liver disease specialist at University College London and one of the study's co-authors. "We were able to validate these novel and exciting observations in patients, providing a route to develop biomarkers that can be measured in the blood to identify those at risk, and new therapies to treat severe liver disease."
Studies have shown that senescence in liver cells is highly indicative of underlying disease. As such, it's an important area for developing targeted treatment. In the present study in mice, the researchers found that liver senescence progressed to failure in other organs, such as the kidneys, lungs, and brain. By investigating the interaction between liver senescence and kidney function, particularly, they were able to show that a "critical mass" needed to be reached before the senescence spread to other organs.
To see whether these findings were relevant to human disease, the researchers examined 34 patients with severe acute liver failure. They found that elevated levels of biomarkers of liver cell senescence – taken from a biopsy – predicted disease outcome, the need for liver transplantation, and the failure of other organs.