>
Interview 1915 - Can You Wake Someone Up? with Kate Ledogar
Regional Banks To Go Bust? Massive Bailouts Coming | John Rubino
Media is melting down over Elon Musk and it is glorious to watch - fast clips
Trump stuns 'disinformation' cartel with pro-free speech FCC nominee.
Wireless ultrasonic cutter is truly a jack of all trades
CFMoto's electric motocross set to bring an e-dirt bike revolution
Five Unmanned SpaceX Starships to Mars in 2026 with Thousands of Teslabots
Implants made of your blood could repair broken bone
NASA awards $11.5 million to help design the aircraft of tomorrow
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
SWIM is funded by NASA's Innovative Advanced Concepts program under the agency's Space Technology Mission Directorate.
NASA and Caltech teams are already developing the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds, taking the science even further.
This is where an ocean-exploration mission concept called SWIM comes in. Short for Sensing With Independent Micro-swimmers, the project envisions a swarm of dozens of self-propelled, cellphone-size swimming robots that, once delivered to a subsurface ocean by an ice-melting cryobot, would zoom off, looking for chemical and temperature signals that could indicate life.
The prototype used in most of the pool tests was about 16.5 inches (42 centimeters) long, weighing 5 pounds (2.3 kilograms). As conceived for spaceflight, the robots would have dimensions about three times smaller — tiny compared to existing remotely operated and autonomous underwater scientific vehicles.
Led by NASA's Jet Propulsion Laboratory in Southern California, the SWIM project was supported by NASA's Innovative Advanced Concepts program under the agency's Space Technology Mission Directorate. Work on the project took place from spring 2021 to fall 2024.
The SWIM team's latest iteration is a 3D-printed plastic prototype that relies on low-cost, commercially made motors and electronics. Pushed along by two propellers, with four flaps for steering, the prototype demonstrated controlled maneuvering, the ability to stay on and correct its course, and a back-and-forth "lawnmower" exploration pattern. It managed all of this autonomously, without the team's direct intervention. The robot even spelled out "J-P-L."
Digital versions of these little robots got their own test, not in a pool but in a computer simulation. In an environment with the same pressure and gravity they would likely encounter on Europa, a virtual swarm of 5-inch-long (12-centimeter-long) robots repeatedly went looking for potential signs of life. The computer simulations helped determine the limits of the robots' abilities to collect science data in an unknown environment, and they led to the development of algorithms that would enable the swarm to explore more efficiently.