>
War on Words: Both Parties Try to Silence Speech They Don't Like
Low Interest Rates Don't Have the Stimulus the Economy Craves
"What's About To Happen Is Not A Coincidence" | Whitney Webb
Future of Satellite of Direct to Cellphone
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1

How does the IsoMat achieve these goals? Essentially by moving heat from one place to another in a radically quick and efficient fashion.
At the heart of it, this is a new, multi-dimensional take on a simple heat pipe. These sealed metal tubes take advantage of phase changes in a trapped fluid to rapidly shift thermal energy. Heat them up at one end, and the fluid within will boil and evaporate, racing down the length of the tube as a gas.
As it reaches cooler metal, the gas condenses back into a liquid, releasing the heat, and the liquid flows back to the hot end so the process can repeat. Used in everything from laptops to spacecraft, heat pipes are an extremely effective way to transfer heat quickly, evenly and efficiently, with almost zero energy cost.
Flint's IsoMat is a flat aluminum sheet, that's effectively got row after row of tiny, sealed heat pipe cavities built into it. That's ... it. So if one part of the mat starts heating up, the internal fluid soaks up that energy, boils, and then rushes to fill the cavities stretching right across the mat, resulting in what the company claims is "near-instantaneous heat transfer across the entire surface," and a thermal transfer system some 5,000 times more efficient than copper or aluminum alone.
By carefully tuning the boiling and condensation points of the internal fluid, a whole bunch of different applications become apparent wherever there's a thermal gradient to cross. Flint highlights the following three.
A building with an IsoMat roof, or walls cladded in this material, could harness ambient temperature differences to naturally heat or cool the interior. And, presumably using thermoelectric generation, Flint says such a building could "potentially harvest enough energy from the air to power an entire home," or at least, to radically reduce your energy bill.
Commercial refrigerators, says the company, could be 30% more efficient if they used IsoMat shelves, which would chill things through direct contact, in addition to the regular cold air circulation gear. It's fair to say this could be a seriously big deal, given that according to theĀ International Institute of Refrigeration, cooling accounted for around 20% of the world's energy consumption in 2019 if you include things like air con.