>
"Bullion Banks Just Got TRAPPED--Final COMEX Showdown Is ON! | Andy Schectman Issues ALERT
Scientists reach pivotal breakthrough in quest for limitless energy:
Democrat Rep. Laura Friedman Says the Quiet Part Out Loud -- Admits House Democrats Meet...
Documentary Filmmaker Exposes The Biden Admin's Carefully Designed Child Trafficking Network...
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
The team studied how the double lattice structure – seen in the skeleton of a sponge called Venus' flower basket – demonstrated not only impressive strength, but also auextic behavior – the ability to contract when compressed.
"While most materials get thinner when stretched or fatter when squashed, like rubber, auxetics do the opposite," explained Dr. Jiaming Ma, who authored the paper on this bio-inspired lattice structure (BLS) that appeared in Composite Structures in January. "Auxetics can absorb and distribute impact energy effectively, making them extremely useful."
The team at RMIT found that when you combine lattices in a structure similar to a deep-sea sponge, your material of choice can absorb more energy and handle more stress before deforming.
Using the same amount of material, the BLS affords 13 times more stiffness than existing auxetic materials (like those used in heart stents), absorbs 10% more energy, and exhibits a 60% greater strain range than existing designs – meaning it can deform a lot more before it starts to break.
The researchers tested this BLS design by 3D printing a sample made from thermoplastic polyurethane (TPU 95A). Their next step is to produce steel versions of this design for use with concrete to see how it holds up as a construction material.
"We're developing a more sustainable building material by using our design's unique combination of outstanding auxeticity, stiffness, and energy absorption to reduce steel and cement usage in construction," Ma explained. "Its auxetic and energy-absorbing features could also help dampen vibrations during earthquakes."
The BLS design could also find use in protective sports gear and medical products that need to be light but strong.