>
Who Really Owns America (It's Not Who You Think)
Canada Surrenders Control Of Future Health Crises To WHO With 'Pandemic Agreement': Report
Retina e-paper promises screens 'visually indistinguishable from reality'
Unearthed photos of 'Egypt's Area 51' expose underground complex sealed off...
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them
China Innovates: Transforming Sand into Paper
Millions Of America's Teens Are Being Seduced By AI Chatbots
Transhumanist Scientists Create Embryos From Skin Cells And Sperm
You've Never Seen Tech Like This
Sodium-ion battery breakthrough: CATL's latest innovation allows for 300 mile EVs
Defending Against Strained Grids, Army To Power US Bases With Micro-Nuke Reactors

Scientists have now set about addressing that shortcoming, by strengthening wood with added iron.
Led by Asst. Prof. Vivian Merk, a team of researchers at Florida Atlantic University (FAU) started out with cubes of untreated red oak hardwood. Red oak – along with hardwoods like maple, cherry and walnut – is an example of what's known as ring-porous wood. In a nutshell, this means that it utilizes large ring-shaped internal vessels to draw water up from the tree's roots to its leaves.
The scientists proceeded to mix ferric nitrate with potassium hydroxide, creating a hard iron oxide mineral called nanocrystalline ferrihydrite, which occurs naturally in soil and water. Utilizing a vacuum impregnation process, nanoparticles of that ferrihydrite were drawn into the wood and deposited inside of its individual cell walls.