>
The War On Iran – Summing Up The First Round
Why 'The Shawshank Redemption' is the best movie about investing ever made
App-y Travels: Private Aviation Has Finally Embraced Smartphone Chartering
The portable mosquito air defense system.
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
A groundbreaking study published in the Journal of Biomolecular Structure and Dynamics suggests just that — revealing how a natural compound found in licorice root might be a powerful weapon against breast cancer.
The sweet science behind glycyrrhizin
Glycyrrhizin, the active ingredient in licorice root responsible for its sweetness, has been used for centuries in traditional medicine to treat everything from sore throats to digestive issues. But now, researchers are uncovering its potential as a natural cancer-fighting agent. (Related: Licorice contains powerful cancer-killing phytochemicals.)
Using advanced computer modeling and bioinformatics — a subdiscipline of biology and computer science that uses software tools to analyze and interpret biological data — Iranian researchers mapped out exactly how this compound interacts with breast cancer cells, and the results are promising.
The study dug deep into the molecular pathways glycyrrhizin takes to combat cancer. Specifically, it focused on the breast cancer genes glycyrrhizin targets and how the compound interacts with the genes' protein products.
Of the 10 breast cancer-related genes the researchers looked at, they found that glycyrrhizin showed the highest binding affinity to three genes, namely, POLK, TBXAS1 and ADRA1A. These genes are active in three types of breast cancer: breast carcinoma, malignant neoplasm of the breast and triple-negative breast neoplasms.
The researchers reported that the protein products of these genes "had an association with [breast cancer] at several stages of tumor growth." By binding to and influencing the activities of these targets, glycyrrhizin is able to influence and control breast cancer growth and survival efficiently.
Molecular dynamics simulation also revealed that of the three interactions mapped out by the study, the destructive pathways triggered by glycyrrhizin's binding to ADRA1A had the highest likelihood of occurring.