>
The fraud being exposed in California is INSANE
BlackRock Just Confirmed the Worst-Case Scenario
You Don't Own Your Stocks the Way You Think You Do
BLM 'KICKS BISON OFF THE LAND'? The Story the Headlines Didn't Tell
How underwater 3D printing could soon transform maritime construction
Smart soldering iron packs a camera to show you what you're doing
Look, no hands: Flying umbrella follows user through the rain
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries

A groundbreaking study published in the Journal of Biomolecular Structure and Dynamics suggests just that — revealing how a natural compound found in licorice root might be a powerful weapon against breast cancer.
The sweet science behind glycyrrhizin
Glycyrrhizin, the active ingredient in licorice root responsible for its sweetness, has been used for centuries in traditional medicine to treat everything from sore throats to digestive issues. But now, researchers are uncovering its potential as a natural cancer-fighting agent. (Related: Licorice contains powerful cancer-killing phytochemicals.)
Using advanced computer modeling and bioinformatics — a subdiscipline of biology and computer science that uses software tools to analyze and interpret biological data — Iranian researchers mapped out exactly how this compound interacts with breast cancer cells, and the results are promising.
The study dug deep into the molecular pathways glycyrrhizin takes to combat cancer. Specifically, it focused on the breast cancer genes glycyrrhizin targets and how the compound interacts with the genes' protein products.
Of the 10 breast cancer-related genes the researchers looked at, they found that glycyrrhizin showed the highest binding affinity to three genes, namely, POLK, TBXAS1 and ADRA1A. These genes are active in three types of breast cancer: breast carcinoma, malignant neoplasm of the breast and triple-negative breast neoplasms.
The researchers reported that the protein products of these genes "had an association with [breast cancer] at several stages of tumor growth." By binding to and influencing the activities of these targets, glycyrrhizin is able to influence and control breast cancer growth and survival efficiently.
Molecular dynamics simulation also revealed that of the three interactions mapped out by the study, the destructive pathways triggered by glycyrrhizin's binding to ADRA1A had the highest likelihood of occurring.