>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Now imagine a backdoor planted not in an application, or deep in an operating system, but even deeper, in the hardware of the processor that runs a computer. And now imagine that silicon backdoor is invisible not only to the computer's software, but even to the chip's designer, who has no idea that it was added by the chip's manufacturer, likely in some farflung Chinese factory. And that it's a single component hidden among hundreds of millions or billions. And that each one of those components is less than a thousandth of the width of a human hair.
In fact, researchers at the University of Michigan haven't just imagined that computer security nightmare; they've built and proved it works. In a study that won the "best paper" award at last week's IEEE Symposium on Privacy and Security, they detailed the creation of an insidious, microscopic hardware backdoor proof-of-concept. And they showed that by running a series of seemingly innocuous commands on their minutely sabotaged processor, a hacker could reliably trigger a feature of the chip that gives them full access to the operating system. Most disturbingly, they write, that microscopic hardware backdoor wouldn't be caught by practically any modern method of hardware security analysis, and could be planted by a single employee of a chip factory.