>
The 3 Reasons Behind US Plot to Depose Venezuela's Maduro – Video #254
Evangelicals and the Veneration of Israel
Zohran Mamdani's Socialist Recipe for Economic Destruction
BREAKING: Fed-Up Citizens Sue New York AG Letitia James for Voter Intimidation...
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028

After unintentionally creating carbon-rich nanorods, the team realized its accidental invention behaves weirdly with water, demonstrating a 20-year old theory and potentially paving the way to low-energy water harvesting systems and sweat-removing fabrics.
The researchers note that ordinarily materials will absorb more water as the humidity in the air around them increases. But between 50 and 80 percent relative humidity, these nanorods will actually do the opposite and expel water, a behavior they say is not shared by any other material. Below that range, they behave as normal, so the process is reversible by lowering the humidity again.
"Our unusual material behaves a bit like a sponge; it wrings itself out halfway before it's fully saturated with water," says David Lao, PNNL research associate and creator of the material.