>
The Tenpenny Files with Patrick Byrne
What Just Happened With Ron Paul Changes EVERYTHING (You're Witnessing History)
Piers Morgan CLASHES with Candace Owens During On-Air Firestorm Interview:
House Passes Bill to Prosecute Doctors and Parents for Sex Changes for Children...
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF

Known as luminescent solar concentrators (LSC), these devices so far haven't proven as efficient or scalable as regular panels, but now a team at Los Alamos National Laboratory has demonstrated a new technique that could make for larger, more practical solar energy-harvesting windows.
The key to LSCs are molecules known as flurophores embedded within the glass surface, which absorb the light that hits them and re-emit it as lower energy photons. These photons are then guided to the edges of the surface, where strips of conventional PV cells lie in wait to catch them. Over the years, the technology has advanced from visibly studded sphelar cells, to semi-transparent tinted windows, right up to fully transparent planes of energy-producing glass.
The problem is, aesthetically and practically, clear glass would be ideal. Yet those devices can lack in the efficiency department, converting just one percent of the solar energy received.