>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
The creators believe that the new method used to create this nanowire could one day be employed to make minuscule wires for a range of applications, including electricity-generating fabrics, optoelectronic devices, and even superconducting materials that conduct electricity with almost no loss.
Composed of interlocking cages of carbon and hydrogen, diamondoids occur naturally in petroleum fluids. For this research, the tiny molecules were extracted and separated by the researchers and a sulphur atom was attached to each one. In a solution, the sulphur-loaded diamondoids were made to bond with copper ions to create the nanowire building blocks.
In the solution, the building blocks clumped together via a phenomenon known as the van der Waals force, that defines such things as the way certain molecules are attracted or repelled from each other and how geckos are able to walk on glass.