>
Pam Bondi says that if we prosecute everybody in the Epstein Files, the whole system will collapse
Dr Pollan at Harvard has cured schizophrenia using keto diet
We are winning. Big Pharma is finding it too difficult to get new vaccines approved under Trump
Abortion drugs discovered in Bill Gates' vaccines
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

"Despite attractive mechanical and electrical properties, CNTs have largely been a disappointment for 'real-world' applications, because it has not been possible to make them in formats that are useful for engineers," explains Peter Antoinette, co-founder and president of Nanocomp Technologies Inc. (Merrimack, N.H.; www.nanocomptech.com), the developer of the process. Short CNTs do not readily form networks within other materials, unless used at very high concentrations.
The Nanocomp process revolves around a proprietary 1-m long heated reactor (photo) that contains a widely available iron catalyst and allows control of 23 separate process variables. Organic alcohols serve as the carbon source for CNTs. "By exerting tight control over the process conditions, we can manipulate the length and dimensions of the CNTs," Antoinette says. The longer, polymer-like CNTs resulting from the process are commercially available as Miralon products, and they can be spun into "yarn" using equipment for textile fiber processing. Because of their length, the Nanocomp CNTs form bundles and networks that allow them to be more useful in macroscale materials, such as for lightweight structural materials.