>
2025-09-17 -- Ernest Hancock interviews James Corbett (Corbett Report) MP3&4
Whistleblower EXPOSES How Israel Brainwashes American Christians!
Joe Rogan listens to "How to destroy America"
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
"Despite attractive mechanical and electrical properties, CNTs have largely been a disappointment for 'real-world' applications, because it has not been possible to make them in formats that are useful for engineers," explains Peter Antoinette, co-founder and president of Nanocomp Technologies Inc. (Merrimack, N.H.; www.nanocomptech.com), the developer of the process. Short CNTs do not readily form networks within other materials, unless used at very high concentrations.
The Nanocomp process revolves around a proprietary 1-m long heated reactor (photo) that contains a widely available iron catalyst and allows control of 23 separate process variables. Organic alcohols serve as the carbon source for CNTs. "By exerting tight control over the process conditions, we can manipulate the length and dimensions of the CNTs," Antoinette says. The longer, polymer-like CNTs resulting from the process are commercially available as Miralon products, and they can be spun into "yarn" using equipment for textile fiber processing. Because of their length, the Nanocomp CNTs form bundles and networks that allow them to be more useful in macroscale materials, such as for lightweight structural materials.