>
Iran (So Far Away) - Official Music Video
COMEX Silver: 21 Days Until 429 Million Ounces of Demand Meets 103 Million Supply. (March Crisis)
Marjorie Taylor Greene: MAGA Was "All a Lie," "Isn't Really About America or the
Why America's Two-Party System Will Never Threaten the True Political Elites
How underwater 3D printing could soon transform maritime construction
Smart soldering iron packs a camera to show you what you're doing
Look, no hands: Flying umbrella follows user through the rain
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries

Scientists have demonstrated that the design of their new 3D metamaterial is the first structure of its kind to achieve the theoretical limit of stiffness.
Called Isomax, the material is a hard foam based on a repeating formation of geometrically shaped cells. Structures like this are an example of what's called a heterogeneous material – made up of different components – and despite Isomax mostly being air and empty space, it's actually the toughest such composite ever designed.
"The Isomax geometry is maximally stiff in all directions," explains materials scientist Jonathan Berger from UC Santa Barbara.
Berger originally conceived of the design for Isomax in 2015, when he was searching for a material with the highest possible stiffness to lightness ratio.
UCSB Researcher Jonathan Berger on The Most Efficient Material in The World from UC Santa Barbara on Vimeo.