>
Starlink Spy Network: Is Elon Musk Setting Up A Secret Backchannel At GSA?
The Worst New "Assistance Technology"
Vows to kill the Kennedy clan, crazed writings and eerie predictions...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Scientists have demonstrated that the design of their new 3D metamaterial is the first structure of its kind to achieve the theoretical limit of stiffness.
Called Isomax, the material is a hard foam based on a repeating formation of geometrically shaped cells. Structures like this are an example of what's called a heterogeneous material – made up of different components – and despite Isomax mostly being air and empty space, it's actually the toughest such composite ever designed.
"The Isomax geometry is maximally stiff in all directions," explains materials scientist Jonathan Berger from UC Santa Barbara.
Berger originally conceived of the design for Isomax in 2015, when he was searching for a material with the highest possible stiffness to lightness ratio.
UCSB Researcher Jonathan Berger on The Most Efficient Material in The World from UC Santa Barbara on Vimeo.