>
Newsom Folds, Greenlights Domestic Oil Production In California
Jimmy Kimmel Suspended 'Indefinitely' After Pushing Charlie Kirk Propaganda
Explosive-Laden Robots Pour Into Gaza City: 'More Devastating Than Airstrikes'
Psychology Course Introduction - OpenSourceEducation
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
John Martinis, one of Google's quantum computing gurus, laid out Google's "stretch goal": to build and test a 49-qubit ("quantum bit") quantum computer by the end of 2017. This computer will use qubits made of superconducting circuits. Each qubit is prepared in a precise quantum state based on a two-state system. The test will be a milestone in quantum computer technology. In a subsequent presentation, Sergio Boixo, Martinis' colleague at Google, said that a quantum computer with approximately 50 qubits will be capable of certain tasks beyond anything the fastest classical computers can do.
Researchers say that quantum computers promise an exponential increase in speed for a subset of computational chores like prime number factorization or exact simulations of organic molecules. This is because of entanglement: If you prepare entangled qubits, you will be able to manipulate multiple states simultaneously.
New Scientist reports that Google is testing a 20 qubit quantum computer. Alan Ho, an engineer in Google's quantum AI lab, revealed the company's progress at a quantum computing conference in Munich, Germany. His team is currently working with a 20-qubit system that has a "two-qubit fidelity" of 99.5 per cent – a measure of how error-prone the processor is, with a higher rating equating to fewer errors.