>
"We Have To Respond With Force & Strength. We Have To Be Vicious, Just Like They Are":
US Air Force's first official autonomous combat drone takes to the air
Cracker Barrel suspends all restaurant remodels after disastrous rebrand controversy
The moment Israel bombs Hamas leaders as they discuss Trump's Gaza ceasefire deal in Qatar:
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
But is it really worth its salt?
When it comes to electric vehicles, lithium ion batteries are the only game in town. But that doesn't mean other sorts of chemistries aren't vying for a piece of the action. Lithium air batteries, lithium sulfur (Li-S) batteries, and the "asphalt" battery we recently reported on are examples of other approaches being taken towards providing improved energy storage. Now, meet another: the sodium ion battery.
Though pioneered by others, researchers at Stanford (including Yi Cui, a rock star in battery science circles), say their approach can offer similar energy storage of lithium batteries, but for 80% less cost. Obviously, that's significant.
When it comes to other metrics by which to measure performance, however, information is limited. While the team says they've optimized the charging cycle, they still can't give a figure on volumetric energy density, which might indicate whether or not this technology could be used in cars. If the space needed to hold energy is much larger than what is in commercial use now, then this chemistry might be relegated to a role in renewable energy storage instead of in transportation.