>
OTOY | GTC 2023: The Future of Rendering
Humor: Absolutely fking hilarious. - Language warning not for children
President Trump's pick for Surgeon General Dr. Janette Nesheiwat is a COVID freak.
What Big Pharma, Your Government & The Mainstream Media didn't want you to know.
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Spacex BFR construction will start in 4 to 6 months.
would have bigger than Saturn V payloads plus the magic of reusuability. How reusable is of course the trick, but in the optimal case that Brian has written about, to quote Brian:
at $7 million the SpaceX BFR launch 150 tons would have less than a $50 per pound launch cost…
…can take 150 tons from Earth to the moon by using orbital refueling. Each reusable Spacex BFR could make 50 trips to and from the moon each year to get to 7500 tons delivered to the moon.
…Aggressive use of SpaceX reusable launch, focused robotics automation development could achieve the critical mass of moon-based industry within 2 years after the reusable Spacex BFR is fully operational. The planned date is about 2022 for the SpaceX BFR. So 40,000+ tons of lunar industry and robotics manufacturing could be available by 2024….
By 2025, there could be a fleet of 100 BFR. Each could be flying 10-50 times per year if there the market for launches can be grown with $40-200 per pound launch costs.
…The USA could triple that production and buy a separate fleet of 200 SpaceX BFR. If each cost $200 million, then it would cost $40 billion. This would be less than the planned spend for the Space Launch System which would have one or two flights per year. The USA could fly each BFR 50 times and get 10,000 launches per year. For $7 million each flight that would be $70 billion per year to operate at maximum capacity.