>
SEMI-NEWS/SEMI-SATIRE: July 6, 2025 Edition
Why I LOVE America: Freedom, Opportunity, Happiness
She Went On a Vacation to Iran: 'It was Nothing Like I Expected'
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Ocean waves could be one such thread, and Australian company Wave Swell Energy is developing a new device to harvest that energy. New Atlas spoke to Dr. Tom Denniss, the CEO of the company, to find out about the technology.
With the Paris Agreement coming into force last November, almost 200 countries around the world pledged to fight to keep global temperatures from rising more than 2° C (3.6° F) above pre-industrial levels by the end of the 21st century. It's an ambitious and crucial goal, and exploring and exploiting renewable energy sources will play a key role in achieving it.
2016 was a boom year for solar power, and renewables as a whole overtook coal to become the world's largest source of installed power capacity. But nature isn't easily tamed: wind farms and solar arrays are at the mercy of the elements, so the more diverse our renewable energy mix, the more reliable the power grids of the future will be.
The endless motion of the ocean is a great resource, and we've seen some creative methods to try to tap into that energy. Point absorber systems use a buoy to drive an underwater hydraulic system, while Gibraltar's wave energy station is mounted onto a jetty, where it converts the rise and fall of waves into fluid pressure.