>
SEMI-NEWS/SEMI-SATIRE: July 6, 2025 Edition
Why I LOVE America: Freedom, Opportunity, Happiness
She Went On a Vacation to Iran: 'It was Nothing Like I Expected'
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Above – Illustrations showing the basic operation of NIST's artificial synapse, which could connect processors and store memories in future neuromorphic computers operating like the human brain. A synapse is a connection or switch between two brain cells. NIST's artificial synapse is a tiny metal cylinder that processes incoming electrical spikes to customize spiking output signals based on a tunable internal design. Researchers apply current pulses to control the number of nanoclusters pointing in the same direction, as depicted in the "disordered" versus "ordered" illustrations. This design, in which different inputs alter the alignment and resulting output signals, is inspired by how the brain operates. Credit: NIST
The NIST switch, described in Science Advances (link is external), is called a synapse, like its biological counterpart, and it supplies a missing piece for so-called neuromorphic computers. Envisioned as a new type of artificial intelligence, such computers could boost perception and decision-making for applications such as self-driving cars and cancer diagnosis.