>
In my new documentary, Never in America, we pull back the curtain on one of the darkest corners...
I just watched what they did to the King family in Washington, and I couldn't stop thinking:
The Superfood They Turned Into a Weed: Why Is It Illegal to Grow This?
Rep. Marjorie Taylor Greene details ''death threats directly fueled by President Trump'
Build a Greenhouse HEATER that Lasts 10-15 DAYS!
Look at the genius idea he came up with using this tank that nobody wanted
Latest Comet 3I Atlas Anomolies Like the Impossible 600,000 Mile Long Sunward Tail
Tesla Just Opened Its Biggest Supercharger Station Ever--And It's Powered By Solar And Batteries
Your body already knows how to regrow limbs. We just haven't figured out how to turn it on yet.
We've wiretapped the gut-brain hotline to decode signals driving disease
3D-printable concrete alternative hardens in three days, not four weeks
Could satellite-beaming planes and airships make SpaceX's Starlink obsolete?

Many methods have failed in the effort to secure digital communications, but one has remained relatively reliable: Faraday cages. These metallic enclosures prevent all incoming and outgoing electrical charges, and have successfully been used in the past by those hoping to conceal their wireless communications. You may remember Chelsea Manning used a makeshift Faraday cage last year when she asked New York Times reporters to dump their phones in a microwave to prevent prying ears from listening in.
Despite their often unorthodox appearance, Faraday cages are largely considered an effective, if not extreme, additional step in securing communications. While many have utilized this technology for personal uses (A bar owner in the UK even created his own Faraday cage to keep drinkers off their phones), larger institutions like banks, governments, and other corporations turn to Faraday cages to house some of their most sensitive data. These systems also vary in size. Smaller Faraday cages and Faraday bags may be used for individuals while larger corporations may create entire Faraday conference rooms.
It appears, however, that these metal mesh cages may have a chink in their armor.
A new attack method laid out in two recently released papers from researchers at the Cyber Security Research Center in Ben Gurion University in Israel, show how data could potentially be compromised even when encased in a Faraday cage.
The extraction method, dubbed MAGNETO, works by infecting an "air-gapped" device—a computer that isn't connected to the internet—with a specialized malware called ODINI that regulates that device's magnetic fields. From there, the malware can overload the CPU with calculations, forcing its magnetic fields to increase. A local smartphone, (located a maximum of 12 to 15 centimeters from the computer) can then receive the covert signals emanating off the magnetic waves to decode encryption keys, credential tokens, passwords and other sensitive information.