>
Stop Buying Confusing Cheese Cultures (Make This "Lost" Starter Instead)
George Galloway Speaks Out on Being Forced Into Exile After Criticizing Ukraine War
"The wheels are falling off the Trump Administration" and Susie Wiles is to blame
How to Make Car Insurance Affordable Again
Latest Comet 3I Atlas Anomolies Like the Impossible 600,000 Mile Long Sunward Tail
Tesla Just Opened Its Biggest Supercharger Station Ever--And It's Powered By Solar And Batteries
Your body already knows how to regrow limbs. We just haven't figured out how to turn it on yet.
We've wiretapped the gut-brain hotline to decode signals driving disease
3D-printable concrete alternative hardens in three days, not four weeks
Could satellite-beaming planes and airships make SpaceX's Starlink obsolete?
First totally synthetic human brain model has been realized
Mach-23 potato gun to shoot satellites into space
Blue Origin Will Increase New Glenn Thrust 15-25% and Make Rocket Bigger
Pennsylvania Bill – 'Jetsons Act' – Aims To Green-Light Flying Cars

Researchers from the University of Cambridge and Dartmouth College developed a device thinner than a human hair designed to sit between colon layers unnoticed, capturing signals sent up to the brain and pulses it received in return. This crucial information pathway makes up the enteric nervous system (ENS), an often overlooked branch compared with the sympathetic nervous system and parasympathetic nervous system. The ENS, with up to 600 million neurons – made up of 20 different types of these nerve cells – is the gatekeeper of the gastrointestinal tract, involved in all its complex processes and movements, and plays a key role when things go wrong.
"Because the ENS neural activity is 'dampened' down under anaesthesia, the ability to record in awake animals is crucial, as it allows recording of the ENS while the animal experiences stress or during and after eating," explained lead researcher Róisín Owens, from Cambridge's Department of Chemical Engineering and Biotechnology. "This new technology will build a better understanding how the gut and brain communicate, and it could lead to new treatments for digestive and neurological disorders."