>
SEMI-NEWS/SEMI-SATIRE: July 6, 2025 Edition
Why I LOVE America: Freedom, Opportunity, Happiness
She Went On a Vacation to Iran: 'It was Nothing Like I Expected'
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Brain MRIs offer important insight into how our brains work, but they can only produce crude approximations of the areas that are activated by a given stimulus. In order to unravel the minutiae of how neurons communicate and collaborate to form thoughts and feelings, we would need imaging tools with vastly improved resolutions.
Today, far from being able to tackle the 86 billion neurons in the human brain, neuroscientists must settle for studying simple organisms like worms and fish larvae (with neuron counts in the hundreds), relying on slow and cumbersome methods like implanting electrodes into brain tissue to detect electrical signals.
This, however, could soon change. The group of researchers led by Prof. Ed Boyden at MIT has built on previous work to perfect an imaging technique that provides a much fuller picture of the brain's activity. When exposed to red light, a carefully selected fluorescent protein bound to the cellular membrane of neurons reacts to electrical signals by lighting up, to reveal the exact neural path of a thought.