>
Firegate: Democrat LA Mayor Karen Bass' Admin Altered Palisades Fire Report & Deleted Evidence
BREAKING: Candace Owens' Massive Mind Control House of Cards is Now Collapsing in Real Time
We Cannot Build an Economy on Lies
We Went To Nebraska: The Beef Crisis Will Shock You
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China

Now, researchers at the KTH Royal Institute of Technology have developed a new biomaterial out of wood nanofibers that steals the strength record.
Wood is one of nature's sturdiest materials, but that doesn't mean it can't be made even better. Researchers recently "densified" the material to make what they call "super wood," and previous work from the KTH team made wood fibers as strong as steel.
Key to both the previous and current KTH work are what are known as cellulose nanofibrils (CNFs). These tiny fibers come together to make the cell walls of wood strong and stiff, and working out how to assemble them on the nanoscale has helped the team build a stronger material.
The researchers used a flow-assisted assembly technique that involved suspending nanofibers in water, in channels just 1 mm wide. Deionized and low pH water flows through, which helps the CNFs align in the right direction and self-organize into tightly-packed bundles. The resulting material is strong, stiff, lightweight and large enough for practical use, creating what the team says is the strongest biomaterial made so far.