>
SpaceX Starship HeatShield Solution
One Million Signatures For French Immigration Referendum
Man Faces Potential Attempted Murder Charge In France After Stabbing Home Intruder
Report: Older Man Initially Arrested After Kirk Shooting Confessed to Distracting Police...
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Now, researchers at the KTH Royal Institute of Technology have developed a new biomaterial out of wood nanofibers that steals the strength record.
Wood is one of nature's sturdiest materials, but that doesn't mean it can't be made even better. Researchers recently "densified" the material to make what they call "super wood," and previous work from the KTH team made wood fibers as strong as steel.
Key to both the previous and current KTH work are what are known as cellulose nanofibrils (CNFs). These tiny fibers come together to make the cell walls of wood strong and stiff, and working out how to assemble them on the nanoscale has helped the team build a stronger material.
The researchers used a flow-assisted assembly technique that involved suspending nanofibers in water, in channels just 1 mm wide. Deionized and low pH water flows through, which helps the CNFs align in the right direction and self-organize into tightly-packed bundles. The resulting material is strong, stiff, lightweight and large enough for practical use, creating what the team says is the strongest biomaterial made so far.