>
Trump DEPLOYS Election Monitors To Blue States, Democrats SCREAM RIGGED ELECTION
Tucker Carlson: The Nick Fuentes Interview
President Trump Needs to Turn Attention to Our Problems
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

Now, researchers at the KTH Royal Institute of Technology have developed a new biomaterial out of wood nanofibers that steals the strength record.
Wood is one of nature's sturdiest materials, but that doesn't mean it can't be made even better. Researchers recently "densified" the material to make what they call "super wood," and previous work from the KTH team made wood fibers as strong as steel.
Key to both the previous and current KTH work are what are known as cellulose nanofibrils (CNFs). These tiny fibers come together to make the cell walls of wood strong and stiff, and working out how to assemble them on the nanoscale has helped the team build a stronger material.
The researchers used a flow-assisted assembly technique that involved suspending nanofibers in water, in channels just 1 mm wide. Deionized and low pH water flows through, which helps the CNFs align in the right direction and self-organize into tightly-packed bundles. The resulting material is strong, stiff, lightweight and large enough for practical use, creating what the team says is the strongest biomaterial made so far.