>
                    
                    
                    
                    
                    
This roof paint blocks 97% of sunlight and pulls water from the air
'Venomous' Republican split over Israel hits new low as fiery feud reaches White House
Disease-ridden monkey that escaped from research facility shot dead by vigilante mom protecting...
Hooters returns - founders say survival hinges on uniform change after buying chain...
The 6 Best LLM Tools To Run Models Locally
 Testing My First Sodium-Ion Solar Battery 
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...
Review: Thumb-sized thermal camera turns your phone into a smart tool
Army To Bring Nuclear Microreactors To Its Bases By 2028
Nissan Says It's On Track For Solid-State Batteries That Double EV Range By 2028
Carbon based computers that run on iron
 Russia flies strategic cruise missile propelled by a nuclear engine 
100% Free AC & Heat from SOLAR! Airspool Mini Split AC from Santan Solar | Unboxing & Install 
Engineers Discovered the Spectacular Secret to Making 17x Stronger Cement

Perched loftily on Germany's Baltic coast, the small-to-middling town of Greifswald continues to be at the forefront of research into nuclear fusion. This is in no small part down to the presence of the Wendelstein 7-X – a fusion reactor so complicated they literally needed a supercomputer to design it. The latest tidings from the Max Planck Institute for Plasma Physics, creators of the Wendelstein 7-X, are that a new record has been set for the so-called fusion product. This is a theoretical performance benchmark rather than physical matter, but all the same, it's another significant step along the path to practical fusion power.
The fusion product is a measure which indicates how close a reactor is to plasma ignition – the critical point at which nuclear fusion becomes self-sustaining, and which happens naturally in stars like our Sun at a mere 15 million degrees Celsius (or 27 million degrees Fahrenheit, if that helps you compare things to a balmy summer's day.) The product is the result of multiplying ion temperature and density, then dividing by time and hence measured in degree-seconds per cubic meter. This latest hoopla is all because Wendelstein 7-X has achieved 10 to the 26th power of those, which is really rather a lot, apparently.
"This is an excellent value for a device of this size, achieved, moreover, under realistic conditions, i.e. at a high temperature of the plasma ions," Professor Sunn Pedersen says in a press release.