>
My Wray Or The Highway: New Report Raises Troubling Questions Over The FBI...
NATO Chief 'Totally Understands' US Halting Weapons For Ukraine As Russia Celebrates
Supreme Court To Hear Challenges To State Laws Keeping Males Out Of Female Sports
Democrat Civil War Intensifies As Obamaworld Opposes Mamdani
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Developed by scientists from North Carolina State University and the University of North Carolina at Chapel Hill, the system incorporates porous hydrogel nanospheres.
Measuring about 250 nanometers in diameter, each sphere contains a drug/protein known as Y-27632 at its core, which is surrounded by a layer of another drug called tPA (tissue plasminogen activator). On the outside of each sphere is a coating of proteins that bind specifically to fibrin, a protein which is a key component of blood clots.
When injected into a vein, the nanospheres flow freely through the patient's bloodstream until encountering a clot, which they stick to. The tPA then proceeds to leak out, breaking down the fibrin and thus dissolving the clot.