>
US Lawmakers Shmooze with Zelensky at Munich Security Conference...
Scientists have plan to save the world by chopping down boreal forest...
New Coalition Aims To Ban Vaccine Mandates Across US
New Spray-on Powder Instantly Seals Life-Threatening Wounds in Battle or During Disasters
AI-enhanced stethoscope excels at listening to our hearts
Flame-treated sunscreen keeps the zinc but cuts the smeary white look
Display hub adds three more screens powered through single USB port
We Finally Know How Fast The Tesla Semi Will Charge: Very, Very Fast
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year

The GlobalFi approach will be to put all of the antenna gain required on the space side, so it can close high-throughput links to ordinary smartphones without requiring the user to buy a hotspot antenna, satphone sleeve, or other dongle/device. This does require very large antennas on the satellite, but will enable the system to address a market of billions of smartphone users.
The GlobalFi satellites will be in high LEO, not GEO (the DARPA Constructable Platform contract is focused on GEO platforms, but GlobalFi platforms would be in LEO).
Each antenna will have multiple steered beams. The primary reflector is fed by an array of our SWIFT radios acting (sort of) as a phased array. The SWIFT radios are software defined radios, and they have the ability to vary their frequencies to account for doppler effects.