>
SpaceX Starship HeatShield Solution
One Million Signatures For French Immigration Referendum
Man Faces Potential Attempted Murder Charge In France After Stabbing Home Intruder
Report: Older Man Initially Arrested After Kirk Shooting Confessed to Distracting Police...
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Pop bottles are one of the most common types of plastic waste, so the more ways that we can find of recycling them, the better. With that in mind, researchers at the National University of Singapore (NUS) have developed an inexpensive method of converting such bottles into a very useful aerogel.
Led by Assoc. Prof. Hai Minh Duong and Prof. Nhan Phan-Thien, the NUS team started with bottles made from commonly-used polyethylene terephthalate (PET). The PET was rendered down into fibers, which were then coated with silica. From there, the production process got pretty complex, but it basically involved chemically-treating the fibers so that they swelled up, and then drying them out.
The resulting lightweight, porous, flexible and durable aerogel is the world's first such material to be made from PET, and it has many potential applications.
If coated with various methyl-group compounds, for instance, it can absorb spilled oil up to seven times more effectively than other commercially-available sorbent materials. It could also be used as thermal or acoustic insulation in buildings, or (when coated with an amine-group compound) as a filter that captures dust particles and carbon dioxide in reusable face masks.