>
JUST IN: Trump Confirms Meeting With Putin in Hungary Is Cancelled… For Now (VIDEOS)
Identity of 21-Year-Old Semi-Truck Driver Who Killed Three People in Fiery SoCal Crash Released:
Amazon to replace 600,000 human workers with ROBOTS
Tech CEO's are using this man's behavioral science tool to turn our children into addicts
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them
China Innovates: Transforming Sand into Paper
Millions Of America's Teens Are Being Seduced By AI Chatbots
Transhumanist Scientists Create Embryos From Skin Cells And Sperm
You've Never Seen Tech Like This
Sodium-ion battery breakthrough: CATL's latest innovation allows for 300 mile EVs
Defending Against Strained Grids, Army To Power US Bases With Micro-Nuke Reactors
Researchers in Switzerland have figured out a way to reduce the temperature of water to a very cool -263° C (-441.4° F) without freezing it, opening up some interesting possibilities around how we study molecular structures at extreme temperatures.
Water turns to ice as it is cooled to zero degrees and molecules on the surface begin to crystallize and turn to ice, which spreads to nearby molecules and continues on until the whole body of water is frozen solid. In this form, the water molecules are organized in a 3D lattice structure which is very different to the unorganized state of regular water molecules, a characteristic that allows it to flow freely.
So what if water could be cooled to below freezing temperatures without forming the icy crystals that give it this solidity? Physicists and chemists at ETH Zurich and the University of Zurich have figured out a new way of doing this, and it centers on a new kind of biological matter they've called lipidic mesophase. Within it are molecules that behave in much as the same way as natural fat molecules, or lipids, and will take it upon themselves to gather and self-assemble into membranes.