>
Trump defends AG Pam Bondi amid Epstein file backlash: 'Let her do her job'
Metal fuses in space - with no heat or pressure
In case you missed it...AIRLINE GIANT EMIRATES TO ACCEPT BITCOIN AND CRYPTO FOR FLIGHTS
Pentagon to become largest shareholder in rare earth miner MP Materials; shares surge 50%
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
Researchers in Switzerland have figured out a way to reduce the temperature of water to a very cool -263° C (-441.4° F) without freezing it, opening up some interesting possibilities around how we study molecular structures at extreme temperatures.
Water turns to ice as it is cooled to zero degrees and molecules on the surface begin to crystallize and turn to ice, which spreads to nearby molecules and continues on until the whole body of water is frozen solid. In this form, the water molecules are organized in a 3D lattice structure which is very different to the unorganized state of regular water molecules, a characteristic that allows it to flow freely.
So what if water could be cooled to below freezing temperatures without forming the icy crystals that give it this solidity? Physicists and chemists at ETH Zurich and the University of Zurich have figured out a new way of doing this, and it centers on a new kind of biological matter they've called lipidic mesophase. Within it are molecules that behave in much as the same way as natural fat molecules, or lipids, and will take it upon themselves to gather and self-assemble into membranes.