>
Episode 483 - Dissent Into Madness
Israel Placed Surveillance Devices Inside Secret Service Emergency Vehicles...
Here is the alleged partial chat log between Tyler Robinson and his trans lover...
MAJOR BREAKING: State Department & UN ties to Armed Queers SLC leader now confirmed
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Researchers in Switzerland have figured out a way to reduce the temperature of water to a very cool -263° C (-441.4° F) without freezing it, opening up some interesting possibilities around how we study molecular structures at extreme temperatures.
Water turns to ice as it is cooled to zero degrees and molecules on the surface begin to crystallize and turn to ice, which spreads to nearby molecules and continues on until the whole body of water is frozen solid. In this form, the water molecules are organized in a 3D lattice structure which is very different to the unorganized state of regular water molecules, a characteristic that allows it to flow freely.
So what if water could be cooled to below freezing temperatures without forming the icy crystals that give it this solidity? Physicists and chemists at ETH Zurich and the University of Zurich have figured out a new way of doing this, and it centers on a new kind of biological matter they've called lipidic mesophase. Within it are molecules that behave in much as the same way as natural fat molecules, or lipids, and will take it upon themselves to gather and self-assemble into membranes.