>
Starlink Spy Network: Is Elon Musk Setting Up A Secret Backchannel At GSA?
The Worst New "Assistance Technology"
Vows to kill the Kennedy clan, crazed writings and eerie predictions...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Now, researchers from Harvard have shown that thin layers of silica aerogel could warm the surface and block UV radiation while still letting visible light through. That could be enough to keep water liquid and let plants photosynthesize within a given region.
While Mars was once a lush, watery world that could have supported life, that's definitely not the Red Planet we know today. Modern Mars is a dried-up husk, with the only water still there locked away in either the polar ice caps or salty lakes deep underground. The thin atmosphere means that there's very little oxygen, it's extremely cold and there's no protection from UV radiation from the Sun.
The new Harvard study could solve at least a few of those problems, thanks to silica aerogel. It's one of the lightest materials ever created, transparent, and an excellent thermal insulator. All of this means that, at least in theory, a thin layer of silica aerogel in the Martian sky could effectively terraform a small patch of ground below it. This would make the surface warmer, and reflect UV radiation away without blocking visible light.