>
'New Milk' signals new phase for recombinant dairy, says Remilk:
Land O'Lakes and Microsoft Partner to Accelerate AI Innovation in Agriculture
Flock Camera Update: How Arch-Technocrats Are Scamming Your Tax Dollars, Stealing Your Data...
Lab-Grown Milk: 'Real Milk' Without Cows?
New Gel Regrows Dental Enamel–Which Humans Cannot Do–and Could Revolutionize Tooth Care
Researchers want to drop lab grown brains into video games
Scientists achieve breakthrough in Quantum satellite uplink
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?

Now, researchers from Harvard have shown that thin layers of silica aerogel could warm the surface and block UV radiation while still letting visible light through. That could be enough to keep water liquid and let plants photosynthesize within a given region.
While Mars was once a lush, watery world that could have supported life, that's definitely not the Red Planet we know today. Modern Mars is a dried-up husk, with the only water still there locked away in either the polar ice caps or salty lakes deep underground. The thin atmosphere means that there's very little oxygen, it's extremely cold and there's no protection from UV radiation from the Sun.
The new Harvard study could solve at least a few of those problems, thanks to silica aerogel. It's one of the lightest materials ever created, transparent, and an excellent thermal insulator. All of this means that, at least in theory, a thin layer of silica aerogel in the Martian sky could effectively terraform a small patch of ground below it. This would make the surface warmer, and reflect UV radiation away without blocking visible light.