>
Importing Poverty into America: Devolving Our Nation into Stupid
Grand Theft World Podcast 273 | Goys 'R U.S. with Guest Rob Dew
Anchorage was the Receipt: Europe is Paying the Price… and Knows it.
The Slow Epstein Earthquake: The Rupture Between the People and the Elites
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

From hepatitis to cirrhosis there are over 100 different individual conditions that result in damage to the liver. Collectively, liver diseases have been dramatically rising in the United States over the past decade. Damage to liver cells is generally permanent, and if severe enough the only effective treatment is a complete liver transplant.
New research suggests an entirely new treatment for liver disease in the future could eliminate the need for liver transplants by essentially regenerating diseased or damaged liver cells. Utilizing a method called single-cell RNA sequencing the researchers closely studied human fetal and adult livers and discovered a specific type of cell, called a hepatobiliary hybrid progenitor cell (HHyP).
In utero, when a fetus is developing, HHyP cells act as precursors to the two main types of mature liver cells, hepatocytes and cholangiocytes.