>
SpaceX Starship HeatShield Solution
One Million Signatures For French Immigration Referendum
Man Faces Potential Attempted Murder Charge In France After Stabbing Home Intruder
Report: Older Man Initially Arrested After Kirk Shooting Confessed to Distracting Police...
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
From hepatitis to cirrhosis there are over 100 different individual conditions that result in damage to the liver. Collectively, liver diseases have been dramatically rising in the United States over the past decade. Damage to liver cells is generally permanent, and if severe enough the only effective treatment is a complete liver transplant.
New research suggests an entirely new treatment for liver disease in the future could eliminate the need for liver transplants by essentially regenerating diseased or damaged liver cells. Utilizing a method called single-cell RNA sequencing the researchers closely studied human fetal and adult livers and discovered a specific type of cell, called a hepatobiliary hybrid progenitor cell (HHyP).
In utero, when a fetus is developing, HHyP cells act as precursors to the two main types of mature liver cells, hepatocytes and cholangiocytes.