>
Make Your Own Seasoned Rice Mixes!
NASA Reveal Highest Resolution Visible Light and Infrared 3I/Atlas Images
We're evolving too slowly for the world we've built, according to science
There Are No Easy Fights In The Struggle Against The Empire
New Gel Regrows Dental Enamel–Which Humans Cannot Do–and Could Revolutionize Tooth Care
Researchers want to drop lab grown brains into video games
Scientists achieve breakthrough in Quantum satellite uplink
Blue Origin New Glenn 2 Next Launch and How Many Launches in 2026 and 2027
China's thorium reactor aims to fuse power and parity
Ancient way to create penicillin, a medicine from ancient era
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?

If we can restore full regeneration then this could also be the key to immortalizing our bodies.
Placental mammals show a global loss of regenerative potential in numerous tissues during development in utero. Although the timing of the repression of scarless regeneration in humans depends on the tissue type, it is commonly associated with the EFT. In humans, this transition occurs at the completion of Carnegie Stage 23 (8 weeks of development). In the case of the mouse, this corresponds approximately with the close of Theiler Stage 23 (16 days post coitum). Consequently, regeneration during the EFT can be easily studied in marsupial mammals because the animals emerge and enter the pouch while still in the embryonic prefetal state where they are readily accessible for experimentation. Thus it has been determined that scarring begins around pouch day 9 near the EFT.
The mammalian heart appears to be under regulation by the NT and thus provides an important target organ model system to study the relationship between NT and regeneration. Unlike most organs, the heart retains an unusually high degree of regenerative potential after EFT, beyond NT and into the first postnatal week during which time cardiomyocytes begin to become binucleate. Damaging the left anterior descending artery in 1-day old mice results in severe ischemic damage that is nevertheless completely regenerated scarlessly within 7 days.