>
Watch Live: President Trump and UK PM Hold Joint Press Conference
JUST IN: President Trump, JD Vance, Tucker Carlson, Trump Admin Officials...
Fugitive Vaccine Researcher Behind Infamous "No Autism Link" Study ARRESTED...
A stable father figure is essential for raising mature citizens
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
If we can restore full regeneration then this could also be the key to immortalizing our bodies.
Placental mammals show a global loss of regenerative potential in numerous tissues during development in utero. Although the timing of the repression of scarless regeneration in humans depends on the tissue type, it is commonly associated with the EFT. In humans, this transition occurs at the completion of Carnegie Stage 23 (8 weeks of development). In the case of the mouse, this corresponds approximately with the close of Theiler Stage 23 (16 days post coitum). Consequently, regeneration during the EFT can be easily studied in marsupial mammals because the animals emerge and enter the pouch while still in the embryonic prefetal state where they are readily accessible for experimentation. Thus it has been determined that scarring begins around pouch day 9 near the EFT.
The mammalian heart appears to be under regulation by the NT and thus provides an important target organ model system to study the relationship between NT and regeneration. Unlike most organs, the heart retains an unusually high degree of regenerative potential after EFT, beyond NT and into the first postnatal week during which time cardiomyocytes begin to become binucleate. Damaging the left anterior descending artery in 1-day old mice results in severe ischemic damage that is nevertheless completely regenerated scarlessly within 7 days.