>
Masked Muslim youths take to east London streets to 'defend our community' after police bann
Why Owning Gold and Silver Is More Critical Than Ever
Redfin, Realtor, Reality: Signs of a Housing Shift
China's $2.6b Belt and Road Battery project in Australia paid for by our taxpayers
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them
China Innovates: Transforming Sand into Paper
Millions Of America's Teens Are Being Seduced By AI Chatbots
Transhumanist Scientists Create Embryos From Skin Cells And Sperm

If we can restore full regeneration then this could also be the key to immortalizing our bodies.
Placental mammals show a global loss of regenerative potential in numerous tissues during development in utero. Although the timing of the repression of scarless regeneration in humans depends on the tissue type, it is commonly associated with the EFT. In humans, this transition occurs at the completion of Carnegie Stage 23 (8 weeks of development). In the case of the mouse, this corresponds approximately with the close of Theiler Stage 23 (16 days post coitum). Consequently, regeneration during the EFT can be easily studied in marsupial mammals because the animals emerge and enter the pouch while still in the embryonic prefetal state where they are readily accessible for experimentation. Thus it has been determined that scarring begins around pouch day 9 near the EFT.
The mammalian heart appears to be under regulation by the NT and thus provides an important target organ model system to study the relationship between NT and regeneration. Unlike most organs, the heart retains an unusually high degree of regenerative potential after EFT, beyond NT and into the first postnatal week during which time cardiomyocytes begin to become binucleate. Damaging the left anterior descending artery in 1-day old mice results in severe ischemic damage that is nevertheless completely regenerated scarlessly within 7 days.