>
Wash Post Editorial Board Turns Against Climate Agenda?!
One Year Ago I Predicted and Described in Detail Huge Mars AI Plans that Elon Musk Confirmed...
British Teachers To "Spot Misogyny" In Boys And Target Them For Reeducation
Democrats Refuse To Release Post-Mortem Of 2024 Election Loss, DNC Chair Says
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF

Nine years in the making, the facility is built to host the type of super-hot high-speed reactions that take place inside the Sun, and hopefully advance our decades-long pursuit of clean and inexhaustible nuclear fusion energy.
In the works since 1985, ITER (International Thermonuclear Experimental Reactor) is a type of nuclear fusion reactor known as a tokamak and is a collaborative project involving thousands of scientists and engineers from 35 countries. These donut-shaped devices are designed to accommodate circular streams of plasma consisting of hydrogen atoms, which are compressed using superconducting magnets so that they fuse together and release monumental amounts of energy.
There are key technological challenges to overcome when it comes to tokamak reactors. Chiefly, these center on bringing them up to the required temperatures and keeping the streams of plasma in place long enough for the reactions to take place.