>
EXCLUSIVE: Groundbreaking Journalist Nick Sortor Travels America & Reports On What Americans...
Grand Canyon fire cause revealed as historic lodge burns and governor demands investigation
How much more do we need to see to know that this is not normal??
YouTube Will Not Monetize Content Featuring AI-Generated Videos from July 15, 2025
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
Nine years in the making, the facility is built to host the type of super-hot high-speed reactions that take place inside the Sun, and hopefully advance our decades-long pursuit of clean and inexhaustible nuclear fusion energy.
In the works since 1985, ITER (International Thermonuclear Experimental Reactor) is a type of nuclear fusion reactor known as a tokamak and is a collaborative project involving thousands of scientists and engineers from 35 countries. These donut-shaped devices are designed to accommodate circular streams of plasma consisting of hydrogen atoms, which are compressed using superconducting magnets so that they fuse together and release monumental amounts of energy.
There are key technological challenges to overcome when it comes to tokamak reactors. Chiefly, these center on bringing them up to the required temperatures and keeping the streams of plasma in place long enough for the reactions to take place.