>
Israel Exposed Funding 150M Tons Of 'Mood-Altering' Chemtrails Sprayed on US Cities (Video)
China Innovates: Transforming Sand into Paper
ICE Will Be Able to Monitor Exactly Where You Are Using Technology Created by an Israeli Company
Millions Of America's Teens Are Being Seduced By AI Chatbots
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
A special calculation method was developed to determine the perfect waveform to manipulate small particles in the presence of a disordered environment. This makes it possible to hold, move or rotate individual particles inside a sample – even if they cannot be touched directly. The tailor-made light beam becomes a universal remote control for everything small. Microwave experiments have already demonstrated that the method works.
Calculating the Optimal Wave
To achieve this, the particle and its disordered environment are first illuminated with various waves and the way in which the waves are reflected is measured. This measurement is carried out twice in quick succession. "Let's assume that in the short time between the two measurements, the disordered environment remains the same, while the particle we want to manipulate changes slightly," says Stefan Rotter. "Let's think of a cell that moves, or simply sinks downwards a little bit. Then the light wave we send in is reflected a little bit differently in the two measurements." This tiny difference is crucial: With the new calculation method developed at TU Wien, it is possible to calculate the wave that has to be used to amplify or attenuate this particle movement.
"If the particle slowly sinks downwards, we can calculate a wave that prevents this sinking or lets the particle sink even faster," says Stefan Rotter. "If the particle rotates a little bit, we know which wave transmits the maximum angular momentum – we can then rotate the particle with a specially shaped light wave without ever touching it."