>
THE CRYPTO VIGILANTE SUMMIT:
WHAT MATTERS MOST IN CRYPTO
Retarded Or Evil? Leftist Arguments Justifying The Murder Of Charlie Kirk
Charlie Kirk once questioned if Ukraine would try to kill him (VIDEO)
KOL060 | Guest on Ernest Hancock's Declare Your Independence radio show: intellectual property a
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
A 100-watt laser power could create a megawatt nuclear fusion generator. This would provide a total energy gain of more than ten thousand.
It would have deuterium-tritium as fuel. It would use a novel muon generator to produce 1 MW thermal power. The thermal power using pure deuterium as fuel may be up to 220 kW initially: It will increase with time up to over 1 MW due to the production of tritium in one reaction branch.
The reactor would generate neutrons so thick shielding would be needed.
Prior Lab Proof of High Energy Nuclear Fusion Reactions
The Prof Lief Holmlid research group has published studies that prove the formation of mesons and muons with up to 100 MeV u−1 energy by laser-initiated processes in ultra-dense deuterium D(0) and ultra-dense protium.
The extreme density of ultra-dense deuterium D(0) makes it an excellent fuel for nuclear fusion by inertial confinement fusion. The density is so high that only an exciting laser pulse is required and no further compression is needed to reach nuclear reaction conditions.