>
Saul Alinsky's 8 levels of control to create a socialist nation
Tucker's Brother Buckley Carlson on Dogs, Childhood, Nicotine, Frank Luntz and America's...
Rumble introduces crypto wallet with Tether, allowing tips in BTC, USDT, XAUT
Superheat Unveils the H1: A Revolutionary Bitcoin-Mining Water Heater at CES 2026
World's most powerful hypergravity machine is 1,900X stronger than Earth
New battery idea gets lots of power out of unusual sulfur chemistry
Anti-Aging Drug Regrows Knee Cartilage in Major Breakthrough That Could End Knee Replacements
Scientists say recent advances in Quantum Entanglement...
Solid-State Batteries Are In 'Trailblazer' Mode. What's Holding Them Up?
US Farmers Began Using Chemical Fertilizer After WW2. Comfrey Is a Natural Super Fertilizer
Kawasaki's four-legged robot-horse vehicle is going into production
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging

A 100-watt laser power could create a megawatt nuclear fusion generator. This would provide a total energy gain of more than ten thousand.
It would have deuterium-tritium as fuel. It would use a novel muon generator to produce 1 MW thermal power. The thermal power using pure deuterium as fuel may be up to 220 kW initially: It will increase with time up to over 1 MW due to the production of tritium in one reaction branch.
The reactor would generate neutrons so thick shielding would be needed.
Prior Lab Proof of High Energy Nuclear Fusion Reactions
The Prof Lief Holmlid research group has published studies that prove the formation of mesons and muons with up to 100 MeV u−1 energy by laser-initiated processes in ultra-dense deuterium D(0) and ultra-dense protium.
The extreme density of ultra-dense deuterium D(0) makes it an excellent fuel for nuclear fusion by inertial confinement fusion. The density is so high that only an exciting laser pulse is required and no further compression is needed to reach nuclear reaction conditions.