>
Why I LOVE America: Freedom, Opportunity, Happiness
She Went On a Vacation to Iran: 'It was Nothing Like I Expected'
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
New Groundbreaking Study Reveals How Vitamin C Reactivates Skin Regeneration Genes
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
The overhead cost for error correction improves as gate error rate declines.
The Google Quantum supremacy demonstrations confirmed the quantum world has huge computing resources. We are in the noisy qubit era. We can explore heuristic quantum algorithms. We might get near-term quantum advantage for useful applications but this is not guaranteed.
Near-term algorithms should be designed with noise resilience (noisy qubits) in mind.
We will get good truly random number generation and will explore new quantum simulation of complex systems.
Lower quantum gate error rates will lower the overhead cost of quantum error correction, and also extend the reach of quantum algorithms which do not use error correction.
Dequantization: Practical uses of quantum linear algebra and of quantum-inspired classical algorithms are still unclear.