>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In environments ranging from hospitals to food preparation areas, it's vitally important to keep surfaces as bacteria-free as possible. A new material could definitely help, as it's claimed to repel even antibiotic-resistant "superbug" microbes.
Developed at Canada's McMaster University, the substance takes the form of a transparent plastic film that's reportedly flexible, durable and inexpensive to manufacture. The idea is that it could be shrink-wrapped onto frequently-touched items such as door handles, IV stands and railings – it could also be used in the packaging of food.
Drawing inspiration from the hydrophobic (water-repelling) microstructure of the lotus leaf, the film's surface is made up of microscopic wrinkles that keep both liquid droplets and bacteria from making a solid contact. As a result, when either of these land on the material, they simply bounce off.
In order to boost its repellant qualities, the material is additionally dipped in a liquid fluorine-based chemical.
Lab tests have shown that the film warded off almost all antibiotic-resistant MRSA and Pseudomonas bacteria that were applied to its surface. The university is now looking for industry partners who may be interested in commercializing the material.