>
Wash Post Editorial Board Turns Against Climate Agenda?!
One Year Ago I Predicted and Described in Detail Huge Mars AI Plans that Elon Musk Confirmed...
British Teachers To "Spot Misogyny" In Boys And Target Them For Reeducation
Democrats Refuse To Release Post-Mortem Of 2024 Election Loss, DNC Chair Says
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF

In environments ranging from hospitals to food preparation areas, it's vitally important to keep surfaces as bacteria-free as possible. A new material could definitely help, as it's claimed to repel even antibiotic-resistant "superbug" microbes.
Developed at Canada's McMaster University, the substance takes the form of a transparent plastic film that's reportedly flexible, durable and inexpensive to manufacture. The idea is that it could be shrink-wrapped onto frequently-touched items such as door handles, IV stands and railings – it could also be used in the packaging of food.
Drawing inspiration from the hydrophobic (water-repelling) microstructure of the lotus leaf, the film's surface is made up of microscopic wrinkles that keep both liquid droplets and bacteria from making a solid contact. As a result, when either of these land on the material, they simply bounce off.
In order to boost its repellant qualities, the material is additionally dipped in a liquid fluorine-based chemical.
Lab tests have shown that the film warded off almost all antibiotic-resistant MRSA and Pseudomonas bacteria that were applied to its surface. The university is now looking for industry partners who may be interested in commercializing the material.