>
The Decline Of Boys Participating In Youth Sports Has Led To A Generation Of Soft...
First Arrests Hint At How Billions In California Homeless Dollars Vanished...
Trump Refiles $15 Billion Defamation Lawsuit Against New York Times After Court Dismissal
Can Diet-Changes Really Transform ADHD? One Family's Remarkable Discovery
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
Designed to continuously monitor various bodily processes, externally-powered biosensors are not only smaller than their battery-packing counterparts, but they also don't have to be surgically retrieved for battery-changes.
They typically contain an RFID (radio frequency identification) chip, which transmits data when it's temporarily powered up by the radio signal from an external reader device – that device is in turn held near the implant site on the patient's body. In order to produce a signal that's strong enough to be read, however, the biosensor needs to be relatively large.
Led by Asst. Prof. John Ho, a team at the National University of Singapore recently got around this limitation, by creating a reader that's three times more sensitive than existing devices. As a result, the associated biosensor can be correspondingly smaller.
The current prototype sensor is just 0.9 mm in width, and has been injected under the skin of lab rats utilizing a hypodermic needle. Once implanted, it's able to monitor breathing and heart rates, based on its detection of subtle telltale movements. Once developed further, it is hoped that the technology could do much more.